Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell

Membranes (Basel). 2021 Nov 15;11(11):879. doi: 10.3390/membranes11110879.

Abstract

In this paper, the composition, function and structure of the catalyst layer (CL) of a proton exchange membrane fuel cell (PEMFC) are summarized. The hydrogen reduction reaction (HOR) and oxygen reduction reaction (ORR) processes and their mechanisms and the main interfaces of CL (PEM|CL and CL|MPL) are described briefly. The process of mass transfer (hydrogen, oxygen and water), proton and electron transfer in MEA are described in detail, including their influencing factors. The failure mechanism of CL (Pt particles, CL crack, CL flooding, etc.) and the degradation mechanism of the main components in CL are studied. On the basis of the existing problems, a structure optimization strategy for a high-performance CL is proposed. The commonly used preparation processes of CL are introduced. Based on the classical drying theory, the drying process of a wet CL is explained. Finally, the research direction and future challenges of CL are pointed out, hoping to provide a new perspective for the design and selection of CL materials and preparation equipment.

Keywords: catalytic layer; degradation; drying process; membrane electrode assembly; preparation; proton exchange membrane fuel cell.

Publication types

  • Review