A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus Aspergillus nidulans

J Fungi (Basel). 2021 Oct 28;7(11):920. doi: 10.3390/jof7110920.

Abstract

Transient Receptor Potential (TRP) proteins constitute a superfamily that encodes transmembrane ion channels with highly diverse permeation and gating properties. Filamentous fungi possess putative TRP channel-encoded genes, but their functions remain elusive. Here, we report that a putative TRP-like calcium channel, trpR, in the filamentous fungus Aspergillus nidulans, performs important roles in conidiation and in adapting to cell wall disruption reagents in a high temperature-induced defect-dependent manner, especially under a calcium-limited culture condition. The genetic and functional relationship between TrpR and the previously identified high-affinity calcium channels CchA/MidA indicates that TrpR has an opposite response to CchA/MidA when reacting to cell wall disruption reagents and in regulating calcium transients. However, a considerable addition of calcium can rescue all the defects that occur in TrpR and CchA/MidA, meaning that calcium is able to bypass the necessary requirement. Nevertheless, the colocalization at the membrane of the Golgi for TrpR and the P-type Golgi Ca2+ ATPase PmrA suggests two channels that may work as ion transporters, transferring Ca2+ from the cytosol into the Golgi apparatus and maintaining cellular calcium homeostasis. Therefore, combined with data for the trpR deletion mutant revealing abnormal cell wall structures, TrpR works as a Golgi membrane calcium ion channel that involves cell wall integration.

Keywords: Aspergillus nidulans; Transient Receptor Potential (TRP); calcium; cell wall.