The Recent Technologies to Curb the Second-Wave of COVID-19 Pandemic

IEEE Access. 2021 Jul 2:9:97906-97928. doi: 10.1109/ACCESS.2021.3094400. eCollection 2021.

Abstract

Different epidemics, specially Coronavirus, have caused critical misfortunes in various fields like monetary deprivation, survival conditions, thus diminishing the overall individual fulfillment. Various worldwide associations and different hierarchies of government fraternity are endeavoring to offer the necessary assistance in eliminating the infection impacts but unfortunately standing up to the non-appearance of resources and expertise. In contrast to all other pandemics, Coronavirus has proven to exhibit numerous requirements such that curated appropriation and determination of innovations are required to deal with the vigorous undertakings, which include precaution, detection, and medication. Innovative advancements are essential for the subsequent pandemics where-in the forthcoming difficulties can indeed be approached to such a degree that it facilitates constructive solutions more comprehensively. In this study, futuristic and emerging innovations are analyzed, improving COVID-19 effects for the general public. Large data sets need to be advanced so that extensive models related to deep analysis can be used to combat Coronavirus infection, which can be done by applying Artificial intelligence techniques such as Natural Language Processing (NLP), Machine Learning (ML), and Computer vision to varying processing files. This article aims to furnish variation sets of innovations that can be utilized to eliminate COVID-19 and serve as a resource for the coming generations. At last, elaboration associated with future state-of-the-art technologies and the attainable sectors of AI methodologies has been mentioned concerning the post-COVID-19 world to enable the different ideas for dealing with the pandemic-based difficulties.

Keywords: 5G; CT-scan; Epidemic; X-Ray; artificial intelligence; cloud; coronavirus; drone; telemedicine.

Grants and funding

This research work is funded by Qatar Foundation and supported in part by Chiang Mai University.