Mechanical communication in fibrosis progression

Trends Cell Biol. 2022 Jan;32(1):70-90. doi: 10.1016/j.tcb.2021.10.002. Epub 2021 Nov 19.

Abstract

Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.

Keywords: fibrosis; mechanical crosstalk; mechano-based therapeutics; mechanotransduction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Communication
  • Extracellular Matrix* / metabolism
  • Fibrosis
  • Humans
  • Mechanotransduction, Cellular*
  • Stress, Mechanical