Molecular tests for prediction of tumor sensitivity to cytotoxic drugs

Cancer Lett. 2022 Feb 1:526:41-52. doi: 10.1016/j.canlet.2021.11.021. Epub 2021 Nov 20.

Abstract

Chemotherapy constitutes the backbone of cancer treatment. Several predictive assays assist personalized administration of cytotoxic drugs and are recommended for use in a clinical setting. The deficiency of DNA repair by homologous recombination (HRD), which is caused by inactivation of BRCA1/2 genes or other genetic events, is associated with high tumor responsiveness to platinum compounds, bifunctional alkylating agents and topoisomerase II poisons. Low activity of MGMT predicts the efficacy of nitrosoureas and tetrazines. Some clinically established pharmacogenetic tests allow for the adjustment of drug dosage, for example, the analysis of DPYD allelic variants for administration of fluoropyrimidines and UGT1A1 genotyping for the use of irinotecan. While there are promising molecular predictors of tumor sensitivity to pemetrexed, gemcitabine and taxanes, they remain in the investigational stage and require additional validation. Comprehensive molecular analysis of tumors obtained from drug responders and non-responders is likely to reveal new clinically useful predictive markers for cytotoxic therapy.

Keywords: Chemotherapy; Cytotoxic drugs; Expression; Gene; Mutation; Polymorphisms; Predictive markers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use*
  • Humans
  • Neoplasms / drug therapy*

Substances

  • Antineoplastic Agents