Highly Efficient Blue Phosphorescence from Pillar-Layer MOFs by Ligand Functionalization

Adv Mater. 2022 Feb;34(5):e2107612. doi: 10.1002/adma.202107612. Epub 2021 Dec 13.

Abstract

Room temperature phosphorescence (RTP) has been extensively researched in heavy-metal containing complexes and purely organic systems. Despite the rapid blossom of RTP materials, it is still a tremendous challenge to develop highly efficient blue RTP materials with long-lived lifetimes. Taking the metal-organic framework (MOF) as a model, herein, a feasible strategy of ligand functionalization is proposed, including two essential elements, to develop blue phosphorescence materials with high efficiency and long-lived lifetimes simultaneously under ambient conditions. One is isolation of the chromophores with assistance of another predefined co-ligands, the other is restriction of the chromophores' motions through coordination and host-guest interactions. Remarkably, it renders the MOFs with highly efficient blue phosphorescence up to 80.6% and a lifetime of 169.7 ms under ambient conditions. Moreover, a demo of the crown is fabricated with MOFs ink by 3D printing technique. The potential applications for anti-counterfeiting and fingerprint visualization have been also demonstrated. This finding not only outlines a universal principle to design and synthesize highly efficient RTP materials, but also endows traditional MOFs with fresh vitality for potential applications.

Keywords: blue phosphorescence; ligand functionalization; metal-organic frameworks; room temperature phosphorescence.