Semifield root phenotyping: Root traits for deep nitrate uptake

Plant Cell Environ. 2022 Mar;45(3):823-836. doi: 10.1111/pce.14227. Epub 2021 Dec 29.

Abstract

Deep rooting winter wheat genotypes can reduce nitrate leaching losses and increase N uptake. We aimed to investigate which deep root traits are correlated to deep N uptake and to estimate genetic variation in root traits and deep 15 N tracer uptake. In 2 years, winter wheat genotypes were grown in RadiMax, a semifield root-screening facility. Minirhizotron root imaging was performed three times during the main growing season. At anthesis, 15 N was injected via subsurface drip irrigation at 1.8 m depth. Mature ears from above the injection area were analysed for 15 N content. From minirhizotron image-based root length data, 82 traits were constructed, describing root depth, density, distribution and growth aspects. Their ability to predict 15 N uptake was analysed with the least absolute shrinkage and selection operator (LASSO) regression. Root traits predicted 24% and 14% of tracer uptake variation in 2 years. Both root traits and genotype showed significant effects on tracer uptake. In 2018, genotype and the three LASSO-selected root traits predicted 41% of the variation in tracer uptake, in 2019 genotype and one root trait predicted 48%. In both years, one root trait significantly mediated the genotype effect on tracer uptake. Deep root traits from minirhizotron images can predict deep N uptake, indicating the potential to breed deep-N-uptake-genotypes.

Keywords: nitrogen isotope; plant breeding; plant roots; semifield.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genotype
  • Nitrates*
  • Phenotype
  • Plant Roots* / genetics
  • Triticum / genetics

Substances

  • Nitrates