Variations of earthworm gut bacterial community composition and metabolic functions in coastal upland soil along a 700-year reclamation chronosequence

Sci Total Environ. 2022 Jan 15:804:149994. doi: 10.1016/j.scitotenv.2021.149994. Epub 2021 Aug 30.

Abstract

Most ecosystem functions attributed to earthworms are mediated by their internal microbiomes, and these are sensitive to disturbances in the external environment. However, few studies have focused on the response of the earthworm gut microbiome to soil chronosequence. Here, we used 16S rRNA high-throughput sequencing and high-throughput quantitative PCR to investigate the variations in bacterial communities and functional gene abundance in earthworm (Lumbricina sp.) guts and upland soils under 700 years of cultivation. Our results indicated that 700 years of upland cultivation significantly shaped bacterial communities and increased functional traits of microbes in earthworm guts, which were more sensitive to cultivation age compared to the surrounding soils. The earthworm gut bacterial community changed rapidly over the first 300 years of cultivation and then changed slowly in the following centuries. Along with the cultivation age, we also observed that the earthworm gut microbiota was successive towards a copiotrophic strategy (e.g., Xanthobacteraceae, Nocardioidaceae, Hyphomicrobiaceae, and Bacillaceae) and higher potential functions (e.g., ureC, nirS, nosZ, phoD, and pqqC). Furthermore, canonical correspondence analysis further revealed that soil pH, C:N ratio, soil organic carbon, and total nitrogen were key abiotic drivers shaping earthworm gut bacterial communities. Taken together, this study reveals the succession of bacterial communities and potential functions in earthworm guts within 700 years of upland cultivation, which may provide a broader space for us to rationally exploit and utilize the interactions between soil and earthworm gut microbiotas to benefit the soil nutrient cycling process.

Keywords: 16sRNA; Earthworm gut microbiota; Metabolic function; Soil chronosequence.

MeSH terms

  • Animals
  • Carbon
  • Gastrointestinal Microbiome*
  • Microbiota*
  • Oligochaeta*
  • RNA, Ribosomal, 16S / genetics
  • Soil
  • Soil Microbiology

Substances

  • RNA, Ribosomal, 16S
  • Soil
  • Carbon