Lactobacillus rhamnosus Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in High-Fat Diet-Induced Obese Mice

Mol Nutr Food Res. 2022 Jan;66(1):e2100348. doi: 10.1002/mnfr.202100348. Epub 2021 Dec 2.

Abstract

Scope: This study aims to investigate the underlying mechanism of a specific probiotic strain on suppression of adipogenesis and inflammatory response in white adipose tissue (WAT) of high-fat diet (HFD)-fed mice.

Methods and results: Eight strains are screened in vitro for candidates of potential probiotics. Lactobacillus rhamnosus LRH05 (LRH05) and Lactobacillus reuteri LR47 (LR47) are screened out with lower triglyceride expression in vitro. The mice are fed a control diet (CD), HFD, or HFD supplemented with a dose of LRH05 or LR47 at 109 CFU per mouse per day for 10 weeks (n = 8), respectively. The results demonstrate that LRH05, but not LR47, significantly reduce body weight gain and the weight of WAT, as well as improve hepatic steatosis and glucose intolerance. LRH05 regulates the Mogat1, Igf-1, Mcp-1, and F4/80 mRNA expression and decreases macrophage infiltration in WAT. LRH05 shows an increase in butyric and propionic acid-producing bacteria, including Lachnoclostridium, Romboutsia, and Fusobacterium that is coincident with the increased fecal propionic acid and butyric acid levels.

Conclusion: LRH05 shows a strain-specific effect on ameliorating the pro-inflammatory process by reducing inflammatory macrophage infiltration and the expression of inflammation-related genes in mice. Thus, LRH05 can be considered a potential probiotic strain to prevent obesity.

Keywords: gut microbiota; inflammation; macrophages; obesity; probiotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diet, High-Fat / adverse effects
  • Gastrointestinal Microbiome*
  • Inflammation
  • Lacticaseibacillus rhamnosus*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Probiotics* / pharmacology
  • Weight Gain