Modifying Chromatography Conditions for Improved Unknown Feature Identification in Untargeted Metabolomics

Anal Chem. 2021 Dec 7;93(48):15840-15849. doi: 10.1021/acs.analchem.1c02149. Epub 2021 Nov 18.

Abstract

Untargeted metabolomics is an essential component of systems biology research, but it is plagued by a high proportion of detectable features not identified with a chemical structure. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments produce spectra that can be searched against databases to help identify or classify these unknowns, but many features do not generate spectra of sufficient quality to enable successful annotation. Here, we explore alterations to gradient length, mass loading, and rolling precursor ion exclusion parameters for reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) that improve compound identification performance for human plasma samples. A manual review of spectral matches from the HILIC data set was used to determine reasonable thresholds for search score and other metrics to enable semi-automated MS/MS data analysis. Compared to typical LC-MS/MS conditions, methods adapted for compound identification increased the total number of unique metabolites that could be matched to a spectral database from 214 to 2052. Following data alignment, 68.0% of newly identified features from the modified conditions could be detected and quantitated using a routine 20-min LC-MS run. Finally, a localized machine learning model was developed to classify the remaining unknowns and select a subset that shared spectral characteristics with successfully identified features. A total of 576 and 749 unidentified features in the HILIC and RPLC data sets were classified by the model as high-priority unknowns or higher-importance targets for follow-up analysis. Overall, our study presents a simple strategy to more deeply annotate untargeted metabolomics data for a modest additional investment of time and sample.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Liquid
  • Chromatography, Reverse-Phase
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Metabolomics*
  • Tandem Mass Spectrometry*