Biosynthesis of poly(glycolate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate) in Escherichia coli expressing sequence-regulating polyhydroxyalkanoate synthase and medium-chain-length 3-hydroxyalkanoic acid coenzyme A ligase

Biosci Biotechnol Biochem. 2022 Jan 24;86(2):217-223. doi: 10.1093/bbb/zbab198.

Abstract

Chimeric polyhydroxyalkanoate synthase PhaCAR is characterized by the capacity to incorporate unusual glycolate (GL) units and spontaneously synthesize block copolymers. The GL and 3-hydroxybutyrate (3HB) copolymer synthesized by PhaCAR is a random-homo block copolymer, poly(GL-ran-3HB)-b-poly(3HB). In the present study, medium-chain-length 3-hydroxyhexanoate (3HHx) units were incorporated into this copolymer using PhaCAR for the first time. The coenzyme A (CoA) ligase from Pseudomonas oleovorans (AlkK) serves as a simple 3HHx-CoA supplying route in Escherichia coli from exogenously supplemented 3HHx. NMR analyses of the obtained polymers revealed that 3HHx units were randomly connected to 3HB units, whereas GL units were heterogeneously distributed. Therefore, the polymer is composed of 2 segments: P(3HB-co-3HHx) and P(GL-co-3HB-co-3HHx). The thermal and mechanical properties of the terpolymer indicate no contiguous P(3HB) segments in the material, consistent with the NMR results. Therefore, PhaCAR synthesized the novel block copolymer P(3HB-co-3HHx)-b-P(GL-co-3HB-co-3HHx), which is the first block polyhydroxyalkanoate copolymer comprising 2 copolymer segments.

Keywords: 3-hydroxyhexanoate; block copolymer; glycolate; polyhydroxyalkanoate.

MeSH terms

  • Caproates*

Substances

  • Caproates
  • 3-hydroxyhexanoic acid