High-Flux pH-Responsive Ultrafiltration Membrane for Efficient Nanoparticle Fractionation

ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56575-56583. doi: 10.1021/acsami.1c16673. Epub 2021 Nov 17.

Abstract

Fractionation of nanoparticles with different sizes from the mixture by using a single membrane would reduce the membrane cost and enhance the efficiency. In this study, an amphiphilic pH-responsive copolymer was prepared by grafting a pH-responsive hydrophilic polymethacrylic acid (PMAA) side chain from a hydrophobic poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE) backbone. Subsequently, the isoporous pH-responsive membranes (PPMs) were prepared from the functional copolymers with different PMAA chain lengths. PPM indicated reversible pore size decreasing with the increasing pH of the feed. Moreover, the membrane pore size variation range was further extended by adjusting the PMAA side chain length of the copolymer to reach a wide range from 10.2 to 34.5 nm. Owning to the amphiphilic nature of the copolymer, PPM showed a narrow pore size distribution which is responsible for the much higher pure water flux of PPM than the conventional UF membrane with similar retention capability. In the fractionation test, the mixed 20 and 30 nm polystyrene nanoparticles were penetrating PPM at pH 11 and 3, respectively. The pH-responsive PPM indicated great potential for nanoparticle fractionation, while the uniform pores of PPM further enhanced the membrane performance in terms of permeability and selectivity.

Keywords: P(VDF-CTFE)-g-PMAA; high flux ultrafiltration; isoporous membrane; nanoparticle fractionation; pH-responsive membrane.