Life-cycle assessment of full-scale membrane bioreactor and tertiary treatment technologies in the fruit processing industry

Water Environ Res. 2021 Nov 15;94(1):e1661. doi: 10.1002/wer.1661. Online ahead of print.

Abstract

A life-cycle assessment (LCA) study was completed to assess the environmental impacts of an on-site wastewater treatment system in the fresh-cut fruit processing industry consisting of a membrane bioreactor (MBR), followed by reverse osmosis (RO) and ultraviolet (UV) disinfection. The system boundaries comprised raw materials extraction and processing, transportation, construction, operation, and waste disposal. SimaPro 8.0.4.26 was used as the software tool, supported by two impact assessment methods (ReCiPe v1.11 and TRACI v2.1). Analysis showed that the treatment capacity of the MBR and tertiary technologies contributed the least damage to the ecosystem when compared with the other three scenarios and can provide water for reuse. Treating wastewater in municipal wastewater treatment plants (WWTPs) mitigated eutrophication like the MBR system but resulted in more environmental impacts from climate change and human health when compared with the on-site treatment system. Findings will be informative to stakeholders in the fresh-cut agri-food sector seeking input into selecting the appropriate treatment approach, with water reuse a goal. PRACTITIONER POINTS: Life-cycle analysis was completed on a fruit processing facility using MBR + RO + UV. On site treatment with MBR + RO UV provides least amount of environmental impact. Use of MBR + RO + UV treatment on fruit wastewater allows for water reuse. ReCiPe v1.11 and TRACI v2.1 give similar LCA results, with TRACI recommended for North American analysis.

Keywords: fruit processing; life-cycle assessment; membrane bioreactor; wastewater treatment; water reuse.