Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion

Adv Mater. 2023 Aug;35(34):e2106902. doi: 10.1002/adma.202106902. Epub 2021 Dec 18.

Abstract

Engineered intersubband transitions in semiconductor heterostructures featuring multiple quantum wells (MQWs) are shown to support record-high second-order nonlinear susceptibilities. By integrating these materials in metasurfaces with tailored optical resonances, it is possible to further enhance photonic interactions, yielding giant nonlinear responses in ultrathin devices. These metasurfaces form a promising platform for efficient nonlinear processes, including frequency upconversion of low-intensity thermal infrared radiation and harmonic generation, free of phase-matching constraints intrinsic to bulk nonlinear crystals. However, nonlinear saturation at moderately large pump intensities due to the transfer of electron population into excited subbands facilitated by strongly enhanced light-matter interactions in metasurfaces fundamentally limits their overall efficiency for various nonlinear processes. Here, the saturation limits of nonlinear MQW-based metasurfaces for mid-infrared frequency upconversion are significantly extended by optimizing their designs for excitation with a strong pump coherently coupled with unpopulated upper electron subbands. This counterintuitive pumping scheme, combined with tailored material and photonic engineering of the metasurface, avoids saturation at practical levels of continuous-wave pump intensities, yielding significantly larger upconversion efficiencies than in conventional approaches. The present results open new opportunities for nonlinear metasurfaces, less limited by saturation mechanisms, with important implications for night-vision imaging and compact nonlinear wave mixing systems.

Keywords: multiple quantum well metasurfaces; nonlinear optical devices; sum-frequency generation.