Performance of Circular Concrete-Filled FRP-Grooved Steel Composite Tube Columns under Axial Compression

Polymers (Basel). 2021 Oct 22;13(21):3638. doi: 10.3390/polym13213638.

Abstract

A new structure termed "concrete-filled FRP-grooved steel composite tube (CFGCT) column" is proposed, which is composed of a stress-released steel tube (i.e., grooved steel tube), fiber-reinforced polymer (FRP) and concrete. Axial load tests were carried out on twenty-four specimens to investigate the constraint effect of this structure. Three main experimental variables were considered: the steel tube thickness, the FRP type, and the FRP layer. The failure modes, stress-strain relationships and the effect of the main experimental variables were discussed. The stress-strain curves of this new structure are composed of an initial linear part, a nonlinear transition part, a strengthening part and a residual part. The test results demonstrate that the bearing capacity of the structure was improved, and that the mechanical mechanism of the structure was simplified due to the stress-released grooves. Based on the test results and previous studies, formulas for calculating the ultimate stress (fcu), ultimate strain (εcu), peak stress (fcc) and peak strain (εcc) were proposed. In addition, models for predicting the stress-strain curves of CFGCT columns were put forward, and the models could precisely simulate the stress-strain curve of this new composite structure. Hence, this study indicates that a structure composed of FRP and stress-released steel tube can effectively constrain concrete.

Keywords: FRP; axial compression behavior; composite structure; stress-released steel tube; stress-strain model.