Transcriptome-Wide Gene Expression Plasticity in Stipa grandis in Response to Grazing Intensity Differences

Int J Mol Sci. 2021 Nov 2;22(21):11882. doi: 10.3390/ijms222111882.

Abstract

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is a representative species for studying the grazing effect on typical steppe plants in the Inner Mongolia Plateau. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Here, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. As a result, a total of 2357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified in RNA-Seq and qRT-PCR analyses that indicated the modulation of the Calvin-Benson cycle and photorespiration metabolic pathways. The key gene expression profiles encoding various proteins (e.g., ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase, etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection and identifying important questions to address in future transcriptome studies.

Keywords: Calvin–Benson cycle; Stipa grandis; comparative transcriptomic analysis; differentially expressed gene; gene expression plasticity; grazing adaptation; photorespiration.

MeSH terms

  • Adaptation, Physiological*
  • Animals
  • Gene Expression Regulation, Plant*
  • Grassland
  • Herbivory*
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Poaceae / genetics*
  • Poaceae / growth & development
  • Poaceae / metabolism
  • Sheep
  • Transcriptome*

Substances

  • Plant Proteins