Mechanical Properties of Human Concentrated Growth Factor (CGF) Membrane and the CGF Graft with Bone Morphogenetic Protein-2 (BMP-2) onto Periosteum of the Skull of Nude Mice

Int J Mol Sci. 2021 Oct 20;22(21):11331. doi: 10.3390/ijms222111331.

Abstract

Concentrated growth factor (CGF) is 100% blood-derived, cross-linked fibrin glue with platelets and growth factors. Human CGF clot is transformed into membrane by a compression device, which has been widely used clinically. However, the mechanical properties of the CGF membranes have not been well characterized. The aims of this study were to measure the tensile strength of human CGF membrane and observe its behavior as a scaffold of BMP-2 in ectopic site over the skull. The tensile test of the full length was performed at the speed of 2mm/min. The CGF membrane (5 × 5 × 2 mm3) or the CGF/BMP-2 (1.0 μg) membrane was grafted onto the skull periosteum of nude mice (5-week-old, male), and harvested at 14 days after the graft. The appearance and size of the CGF membranes were almost same for 7 days by soaking at 4 °C in saline. The average values of the tensile strength at 0 day and 7 days were 0.24 MPa and 0.26 MPa, respectively. No significant differences of both the tensile strength and the elastic modulus were found among 0, 1, 3, and 7 days. Supra-periosteal bone induction was found at 14 days in the CGF/BMP-2, while the CGF alone did not induce bone. These results demonstrated that human CGF membrane could become a short-term, sticky fibrin scaffold for BMP-2, and might be preserved as auto-membranes for wound protection after the surgery.

Keywords: BMP-2; bone induction; concentrated growth factor (CGF); human; mechanical property.

MeSH terms

  • Adult
  • Animals
  • Bone Morphogenetic Protein 2 / pharmacology*
  • Bone Morphogenetic Protein 2 / therapeutic use
  • Bone Transplantation
  • Elastic Modulus
  • Fibrin Tissue Adhesive / chemistry
  • Fibrin Tissue Adhesive / pharmacology
  • Fibrin Tissue Adhesive / therapeutic use
  • Healthy Volunteers
  • Humans
  • Intercellular Signaling Peptides and Proteins / isolation & purification
  • Intercellular Signaling Peptides and Proteins / pharmacology*
  • Intercellular Signaling Peptides and Proteins / therapeutic use*
  • Male
  • Membranes / chemistry
  • Membranes / metabolism
  • Mice
  • Mice, Nude
  • Periosteum / cytology
  • Periosteum / drug effects*
  • Skull / cytology
  • Skull / drug effects*
  • Tensile Strength
  • Wound Healing / drug effects

Substances

  • BMP2 protein, human
  • Bone Morphogenetic Protein 2
  • Fibrin Tissue Adhesive
  • Intercellular Signaling Peptides and Proteins