Toward Lossless Infrared Optical Trapping of Small Nanoparticles Using Nonradiative Anapole Modes

Phys Rev Lett. 2021 Oct 29;127(18):186803. doi: 10.1103/PhysRevLett.127.186803.

Abstract

A challenge in plasmonic trapping of small nanoparticles is the heating due to the Joule effect of metallic components. This heating can be avoided with electromagnetic field confinement in high-refractive-index materials, but nanoparticle trapping is difficult because the electromagnetic fields are mostly confined inside the dielectric nanostructures. Herein, we present the design of an all-dielectric platform to capture small dielectric nanoparticles without heating the nanostructure. It consists of a Si nanodisk engineered to exhibit the second-order anapole mode at the infrared regime (λ=980 nm), where Si has negligible losses, with a slot at the center. A strong electromagnetic hot spot is created, thus allowing us to capture nanoparticles as small as 20 nm. The numerical calculations indicate that optical trapping in these all-dielectric nanostructures occurs without heating only in the infrared, since for visible wavelengths the heating levels are similar to those in plasmonic nanostructures.