Energy Resonance Transfer between Quantum Defects in Metal Halide Perovskites

J Phys Chem Lett. 2021 Nov 18;12(45):11182-11190. doi: 10.1021/acs.jpclett.1c02965. Epub 2021 Nov 11.

Abstract

Quantum defects have been shown to play an essential role in nonradiative recombination in metal halide perovskites (MHPs). Nonetheless, the processes of charge transfer assisted by defects are still ambiguous. Herein, we theoretically study the nonradiative multiphonon processes among different types of quantum defects in MHPs using Markvart's model for the induced mechanisms of electron-electron and electron-phonon interactions. We find that the charge carrier can transfer between the neighboring levels of the same type of shallow defects by multiphonon processes, but it will be distinctly suppressed with an increase in the defect depth. For the nonradiation multiphonon transitions between donor- and acceptor-like defects, the processes are very fast and not sensitive to the defect depth, which provides a possible explanation for the phenomenon of blinking of photoluminescence spectra. We also discuss the temperature dependence of these multiphonon processes and find that their variational trends depend on the comparison of the Huang-Rhys factor with the emitted phonon number. These theoretical results not only fill some of the gaps in defect-assisted nonradiative processes in the perovskite materials but also provide deeper physical insights into producing higher-performance perovskite-based devices.