Proteoliposomes for Studying Lipid-protein Interactions in Membranes in vitro

Bio Protoc. 2021 Oct 20;11(20):e4197. doi: 10.21769/BioProtoc.4197.

Abstract

Lipids in biomembranes can control the structure and, therefore, the functionality of membrane-embedded protein complexes. Unraveling how the lipid composition determines the mode of operation of membrane proteins provides mechanistic insights into their functionality. We applied a proteoliposome technique for studying how proteins function in biomembranes. The incorporation of isolated membrane proteins in preformed liposomes made from a well-defined lipid composition (proteoliposomes) is a powerful tool for studying lipid-protein interactions. Over several decades, the proteoliposome technique was employed for many different membrane proteins. Recently, it was recognized that different lipid compositions control the light-harvesting functionality of the major photosynthetic light-harvesting complex II (LHCII) isolated from plant thylakoid membranes in vitro. This technique allows systematic examination of the role of so-called non-bilayer lipids on light-harvesting characteristics of LHCII. This protocol describes the isolation of LHCII from leaves and details a four-step procedure to incorporate the detergent-solubilized membrane protein in large unilamellar vesicles (LUV). The protocol was optimized to ensure a very high lipid/protein ratio, designed to specifically examine lipid-protein interactions by minimizing LHCII aggregation. The procedure provides structurally and functionally highly intact LHCII in a detergent-free lipid bilayer with a defined composition.

Keywords: Large unilamellar vesicles; Light-harvesting complex; Lipids; Monogalactosyldiacylglycerol; Photosynthesis; Proteoliposomes; Thylakoid membrane.