Stemflow generation as influenced by sugarcane canopy development

Environ Monit Assess. 2021 Nov 10;193(12):789. doi: 10.1007/s10661-021-09570-5.

Abstract

Rainfall is generally partitioned into throughfall, stemflow, and interception in ecosystems. Stemflow variability can affect the hydrology, ecology, and soil chemistry patterns. However, the influence of canopy structure and rainfall characteristics on stemflow production in sugarcane plantations which are important for renewable energy production remain poorly understood. By using funnels attached to the sugarcane stems, the present study determined the stemflow amount during the period of sugarcane growth and its relationship with plant development. Approximately, 14% of gross rainfall reached the soil as stemflow, and the funneling ratios was 60. In general, it was observed a positive relationship between stemflow rates with both leaf area index and plant height. This was attributed to an increasing number of acute branching angles of the sugarcane leaves as well as high stem tillering and density. However, at the end of growth cycle, stemflow rate was lower than in previous periods which can be attributed to changes in sugarcane canopy such as stems inclination and lodging, reducing the effectiveness of water conveyance along the stem. Our study showed the need to include stemflow to better understand the hydrology of sugarcane plantations.

Keywords: Agricultural management; Crops; Intensive agriculture; Interception; Plant traits; Throughfall.

MeSH terms

  • Ecosystem
  • Environmental Monitoring
  • Rain*
  • Saccharum*
  • Soil
  • Trees

Substances

  • Soil