Mucoadhesion: mucin-polymer molecular interactions

Int J Pharm. 2021 Dec 15:610:121245. doi: 10.1016/j.ijpharm.2021.121245. Epub 2021 Oct 28.

Abstract

Mucoadhesion, adhesion of a material to a mucous membrane or a mucus-covered surface, has been employed in drug delivery to prolong contact with adsorption sites and consequently a likely improvement of drug absorption. Mucoadhesion in the oral cavity also provides additional effects on tactile mouthfeel and extended flavor delivery, which impact consumer perception. The mechanisms behind mucoadhesion have not been well understood and there are contradictory literature results on the ranking of mucoadhesive properties of different polymers based on what in-vitro methods that are used. We herein examine the molecular interactions of different polymers with mucin from bovine submaxillary glands at pH 6.6 by using 1H NMR (Nuclear Magnetic Resonance) that provides atomically resolved information on conformational mobility of the mucin. Studying different types of polymers with different chemical structures and degrees of polymerization (DP), we can via the NMR linewidths and the signal intensities distinguish if the polymers interact with specific segments of the mucin or if they have a universal effect on the mobility of all the molecular segments of the mucin. The specific interaction sites on the mucin for positively charged polymer poly(ethyleneimine) are shown to be different from those for negatively and neutrally charged polymers. In addition, the interactions are also driven by the DP, the concentration of the polymers, and the dehydration. Deepened understanding of molecular effects of the different polymers on the mucin can therefore have strong impact on the development of mucoadhesive products in pharmaceutical and food applications. Finally, we raise awareness of the interpretation of rheological data in terms of mucoadhesion.

Keywords: Dynamics; Hydration; Mobility; NMR; Rheology.

MeSH terms

  • Animals
  • Cattle
  • Drug Delivery Systems
  • Mucins*
  • Mucus
  • Polymers*
  • Rheology

Substances

  • Mucins
  • Polymers