High-resolution, 3D multi-TE 1 H MRSI using fast spatiospectral encoding and subspace imaging

Magn Reson Med. 2022 Mar;87(3):1103-1118. doi: 10.1002/mrm.29015. Epub 2021 Nov 9.

Abstract

Purpose: To develop a novel method to achieve fast, high-resolution, 3D multi-TE 1 H-MRSI of the brain.

Methods: A new multi-TE MRSI acquisition strategy was developed that integrates slab selective excitation with adiabatic refocusing for better volume coverage, rapid spatiospectral encoding, sparse multi-TE sampling, and interleaved water navigators for field mapping and calibration. Special data processing strategies were developed to interpolate the sparsely sampled data, remove nuisance signals, and reconstruct multi-TE spatiospectral distributions with high SNR. Phantom and in vivo experiments have been carried out to demonstrate the capability of the proposed method.

Results: The proposed acquisition can produce multi-TE 1 H-MRSI data with three TEs at a nominal spatial resolution of 3.4 × 3.4 × 5.3 mm3 in around 20 min. High-SNR brain metabolite spatiospectral reconstructions can be obtained from both a metabolite phantom and in vivo experiments by the proposed method.

Conclusion: High-resolution, 3D multi-TE 1 H-MRSI of the brain can be achieved within clinically feasible time. This capability, with further optimizations, could be translated to clinical applications and neuroscience studies where simultaneously mapping metabolites and neurotransmitters and TE-dependent molecular spectral changes are of interest.

Keywords: SPICE; joint sparsity; multi-TE MRSI; sparse sampling; spatiospectral encoding; union-of-subspaces.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Brain / diagnostic imaging
  • Brain Mapping
  • Magnetic Resonance Imaging*
  • Phantoms, Imaging