Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization

Angew Chem Int Ed Engl. 2021 Dec 13;60(51):26528-26534. doi: 10.1002/anie.202111823. Epub 2021 Nov 8.

Abstract

The application of traditional electrode materials for high-performance capacitive deionization (CDI) has been persistently limited by their low charge-storage capacities, excessive co-ion expulsion and slow salt removal rates. Here we report a bottom-up approach to the preparation of a two-dimensional (2D) Ti3 C2 Tx MXene-polydopamine heterostructure having ordered in-plane mesochannels (denoted as mPDA/MXene). Interfacial self-assembly of mesoporous polydopamine (mPDA) monolayers on MXene nanosheets leads to the mPDA/MXene heterostructure, which exhibits several unique features: (1) MXene undergoes reversible ion intercalation/deintercalation and possesses high conductivity; (2) mPDA layers establish redox capacitive characteristics and Na+ selectivity, and also help to prevent self-stacking and oxidation of MXene; (3) in-plane mesochannels enable the smooth transport of ions at the internal spaces of this stacked 2D material. When applied as an electrode material for CDI, mPDA/MXene nanosheets exhibit top-level CDI performance and cycling stability compared to those of the so far reported 2D materials. Our study opens an avenue for the rational construction of MXene-organic hybrid heterostructures, and further motivates the development of high-performance CDI electrode materials.

Keywords: 2D materials; MXene; capacitive deionization; interfacial self-assembly; mesoporous structure.