Identification of novel positive allosteric modulators of GLP1R that stimulate its interaction with ligands and Gα subunits

Biochem Biophys Res Commun. 2021 Oct 30:583:162-168. doi: 10.1016/j.bbrc.2021.10.071. Online ahead of print.

Abstract

Glucagon-like peptide-1 (GLP-1) is a major incretin hormone that enhances the release of insulin from pancreatic β-cells by activating the glucagon-like peptide-1 receptor (GLP1R), which belongs to secretin-like class B of G protein-coupled receptors (GPCRs). Owing to the absence of small molecule agonist drugs to GLP1R, focus has been placed on chemical modulators that bind to the allosteric site of GLP1R. In this study, we identified novel small-molecule positive allosteric modulators of GLP1R from a chemical library consisting of commercial drug compounds using an assay system that measures the direct interaction between a purified GLP1R and its ligand, exendin-4. Two newly identified compounds, benzethonium and tamoxifen, significantly enhanced the affinity of peptide ligands for GLP1R although they lacked agonist activity by themselves. In addition, benzethonium augmented the ligand-induced accumulation of cAMP in GLP1R-transfected HEK293T cells. These compounds significantly increased the affinity of GLP1R to the alpha-subunit of G proteins, suggesting that they stabilize GLP1R in a conformation with a higher affinity to peptide ligand as well as G proteins. These compounds may lead to the design of an orally active positive allosteric modulator for GLP1R.

Keywords: Benzethonium; Exendin-4; G protein; GLP1R; Positive allosteric modulators; Tamoxifen.