Cumulative bleaching undermines systemic resilience of the Great Barrier Reef

Curr Biol. 2021 Dec 6;31(23):5385-5392.e4. doi: 10.1016/j.cub.2021.09.078. Epub 2021 Nov 4.

Abstract

Climate change and ENSO have triggered five mass coral bleaching events on Australia's Great Barrier Reef (GBR), three of which occurred in the last 5 years.1-5 Here, we explore the cumulative nature of recent impacts and how they fragment the reef's connectivity. The coverage and intensity of thermal stress have increased steadily over time. Cumulative bleaching in 2016, 2017, and 2020 is predicted to have reduced systemic larval supply by 26%, 50%, and 71%, respectively. Larval disruption is patchy and can guide interventions. The majority of severely bleached reefs (75%) are predicted to have experienced an 80%-100% loss of larval supply. Yet restoration would not be cost-effective in the 2% of such reefs (∼30) that still experience high larval supply. Managing such climate change impacts will benefit from emerging theory on the facilitation of genetic adaptation,6,7 which requires the existence of regions with predictably high or low thermal stress. We find that a third of reefs constitute warm spots that have consistently experienced bleaching stress. Moreover, 13% of the GBR are potential refugia that avoid significant warming more than expected by chance, with a modest proportion (14%) within highly protected areas. Coral connectivity is likely to become increasingly disrupted given the predicted escalation of climate-driven disturbances,8 but the existence of thermal refugia, potentially capable of delivering larvae to 58% of the GBR, may provide pockets of systemic resilience in the near-term. Theories of conservation planning for climate change will need to consider a shifting portfolio of thermal environments over time.

Keywords: climate change; connectivity; coral bleaching; coral reefs; sea surface temperature; spatial patterns; thermal stress.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa*
  • Climate Change
  • Coral Reefs*
  • Larva