One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as potent antileukemic agents

Eur J Med Chem. 2022 Jan 5:227:113952. doi: 10.1016/j.ejmech.2021.113952. Epub 2021 Oct 29.

Abstract

In the current study, we report on the development of novel series of pyrazolo[3,4-b]pyridine derivatives (8a-u, 11a-n, and 14a,b) as potential anticancer agents. The prepared pyrazolo[3,4-b]pyridines have been screened for their antitumor activity in vitro at NCI-DTP. Thereafter, compound 8a was qualified by NCI for full panel five-dose assay to assess its GI50, TGI and LC50 values. Compound 8a showed broad-spectrum anti-proliferative activities over the whole NCI panel, with outstanding growth inhibition full panel GI50 (MG-MID) value equals 2.16 μM and subpanel GI50 (MG-MID) range: 1.92-2.86 μM. Furthermore, pyrazolo[3,4-b]pyridines 8a, 8e-h, 8o, 8u, 11a, 11e, 11h, 11l and 14a-b were assayed for their antiproliferative effect against a panel of leukemia cell lines (K562, MV4-11, CEM, RS4;11, ML-2 and KOPN-8) where they possessed moderate to excellent anti-leukemic activity. Moreover, pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b were further explored for their effect on cell cycle on RS4;11 cells, in which they dose-dependently increased populations of cells in G2/M phases. Finally we analyzed the changes of selected proteins (HOXA9, MEIS1, PARP, BcL-2 and McL-1) related to cell death and viability in RS4;11 cells via Western blotting. Collectively, the obtained results suggested pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b as promising lead molecules for further optimization to develop more potent and efficient anticancer candidates.

Keywords: Anticancer agents; Cell cycle arrest; HOXA9 protein; MEIS1 protein; One-pot synthesis; Pyrazolopyridine.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Structure
  • Pyrazoles / chemical synthesis
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Pyridines / chemical synthesis
  • Pyridines / chemistry
  • Pyridines / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Pyrazoles
  • Pyridines
  • pyrazolo(3,4-b)pyridine