Bacterial Epidemiology and Antimicrobial Resistance Profiles in Children Reported by the ISPED Program in China, 2016 to 2020

Microbiol Spectr. 2021 Dec 22;9(3):e0028321. doi: 10.1128/Spectrum.00283-21. Epub 2021 Nov 3.

Abstract

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.

Keywords: Infectious Disease Surveillance of Pediatrics (ISPED); antimicrobial resistance; bacteria; children; multidrug-resistant organisms.

MeSH terms

  • Acinetobacter baumannii / drug effects
  • Anti-Bacterial Agents / pharmacology
  • Bacteria / classification*
  • Bacteria / drug effects
  • Bacteria / isolation & purification
  • COVID-19 / epidemiology
  • Child
  • China / epidemiology
  • Communicable Diseases / epidemiology*
  • Communicable Diseases / microbiology*
  • Drug Resistance, Bacterial* / drug effects
  • Escherichia coli / drug effects
  • Humans
  • Klebsiella pneumoniae / drug effects
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Microbial Sensitivity Tests
  • Moraxella catarrhalis
  • Pseudomonas aeruginosa / drug effects
  • SARS-CoV-2
  • Staphylococcus aureus / drug effects
  • Staphylococcus epidermidis
  • Streptococcus pneumoniae
  • Streptococcus pyogenes

Substances

  • Anti-Bacterial Agents