Waste to energy conversion for a sustainable future

Heliyon. 2021 Oct 14;7(10):e08155. doi: 10.1016/j.heliyon.2021.e08155. eCollection 2021 Oct.

Abstract

Air pollution, climate change, and plastic waste are three contemporary global concerns. Air pollutants affect the lungs, green gases trap heat radiation, and plastic waste contaminates the marine food chain. Two-thirds of climate change and air pollution drivers are emitted in the process of burning fossil fuels. Pollutants settle in months, green gases take centuries, and plastics take thousands of years. The most polluted regions on the planet are also the ones that are greatly affected by climate change. Air pollutants grow in most climate-change affected areas, contributing to the greenhouse effect. Smog affects local and regional transboundary countries. The biggest greenhouse gas (GHG) emitters may not be the worst-hit victims because wind and water flow distribute green gases and plastic waste worldwide. The major polluters are often rich and developed countries, and the worst affected countries are the underdeveloped poor communities. Technologically advanced countries may help the developing countries in research into removing particulate matter, green gases, and plastic waste. Intergovernmental Panel on Climate Change (IPCC) and Paris Accord have emphasized on immeasurable efforts to encourage the conversion of pollution, green gases, and plastic waste into energy. Conversion of CO2 into petrol, GHG gases into chemicals, biowaste into biofuels, plastic waste into building bricks, and concrete waste into construction materials fosters a circular economy. This work reviews existing waste to power, energy, and value-added product conversion technologies.

Keywords: Fossil fuels; Green gases; Hydrocarbons; Pollutants; Smog; Value added products.

Publication types

  • Review