Enhanced CO2 Electrochemical Reduction Performance over Cu@AuCu Catalysts at High Noble Metal Utilization Efficiency

Nano Lett. 2021 Nov 10;21(21):9293-9300. doi: 10.1021/acs.nanolett.1c03483. Epub 2021 Nov 1.

Abstract

The electrochemical CO2 reduction reaction (CO2RR) represents a viable alternative to help close the anthropogenic carbon cycle and convert intermittent electricity from renewable energy sources to chemical energy in the form of value-added chemicals. The development of economic catalysts possessing high faradaic efficiency (FE) and mass activity (MA) toward CO2RR is critical in accelerating CO2 utilization technology. Herein, an elaborate Au-Cu catalyst where an alloyed AuCu shell caps on a Cu core (Cu@AuCu) is developed and evaluated for CO2-to-CO electrochemical conversion. Specific roles of Cu and Au for CO2RR are revealed in the alloyed core-shell structure, respectively, and a compositional-dependent volcano-plot is disclosed for the Cu@AuCu catalysts toward selective CO production. As a result, the Au2-Cu8 alloyed core-shell catalyst (only 17% Au content) achieves an FECO value as high as 94% and an MACO of 439 mA/mgAu at -0.8 V (vs RHE), superior to the values for pure Au, reflecting its high noble metal utilization efficiency.

Keywords: Au−Cu catalyst; CO selectivity; DFT calculation; core−shell structure; electrochemical CO2 reduction reaction.