Structural Investigations of α-MnS Nanocrystals and Thin Films Synthesized from Manganese(II) Xanthates by Hot Injection, Solvent-Less Thermolysis, and Doctor Blade Routes

ACS Omega. 2021 Oct 11;6(42):27716-27725. doi: 10.1021/acsomega.1c02907. eCollection 2021 Oct 26.

Abstract

Manganese(II) xanthate complexes of the form [Mn(S2COR)2(TMEDA)], where TMEDA = tetramethylethylenediamine and R = methyl (1), ethyl (2), n-propyl (3), n-butyl (4), n-pentyl (5), n-hexyl (6), and n-octyl (7), have been synthesized and structures elucidated using single-crystal X-ray diffraction. Complexes 1-7 were used as molecular precursors to synthesize manganese sulfide (MnS). Olelyamine-capped nanocrystals have been produced via hot injection, while the doctor blading followed by thermolysis yielded thick films. Free-standing polycrystalline powders of MnS are produced by direct thermolysis of precursor powders. All thermolysis techniques produced cubic MnS, as confirmed by powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Magnetic measurements reveal that the α-MnS nanocrystals exhibit ferromagnetic behavior with a large coercive field strength (e.g., 0.723 kOe for 6.8 nm nanocrystals).