Lipoprotein size is a main determinant for the rate of hydrolysis by exogenous LPL in human plasma

J Lipid Res. 2022 Jan;63(1):100144. doi: 10.1016/j.jlr.2021.100144. Epub 2021 Oct 26.

Abstract

LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.

Keywords: VLDL particle size; angiopoietin-like proteins; apolipoproteins; capillaries; exogenous LPL; isothermal titration calorimetry; lipid signature; lipidomics; plasma triglyceride metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lipoproteins*
  • Triglycerides*

Substances

  • Lipoproteins
  • Triglycerides
  • lipoprotein triglyceride