Uniaxially Oriented Electrically Conductive Metal-Organic Framework Nanosheets Assembled at Air/Liquid Interfaces

ACS Appl Mater Interfaces. 2021 Nov 17;13(45):54570-54578. doi: 10.1021/acsami.1c16180. Epub 2021 Oct 27.

Abstract

Although most metal-organic frameworks (MOFs)─highly porous crystalline metal complex networks with structural and functional varieties─are electrically insulating, high electrical conduction has been recently demonstrated in MOFs while retaining permanent porosity. Usability of electronically active MOFs effectively emerges when they are created in a thin-film state as required in major potential applications such as chemiresistive sensors, supercapacitors, and electrode catalysts. Thin-film morphology including crystallinity, thickness, density, roughness, and orientation sensitively influences device performance. Fine control of such morphological parameters still remains as a main issue to be addressed. Here, we report a bottom-up procedure of assembling a conductive MOF nanosheet composed of 2,3,6,7,10,11-hexaiminotriphenylene molecules and nickel ions (HITP-Ni-NS). Creation of HITP-Ni-NS is achieved by applying air/liquid (A/L) interfacial bottom-up synthesis. HITP-Ni-NS has a multilayered structure with 14 nm thickness and is endowed with high crystallinity and uniaxial orientation, demonstrated by synchrotron X-ray crystallography. Facile transferability of HITP-Ni-NS assembled at air/liquid interfaces to any desired substrate enables us to measure its electrical conductivity, recorded as 0.6 S cm-1─highest among those of triphenylene-based MOF nanosheets with a thickness lower than 100 nm.

Keywords: air/liquid interfaces; electrical conductivity; metal−organic frameworks; nanosheets; oriented bottom-up growth.