Design, Synthesis, Cytotoxic Screening and Molecular Docking Studies of Novel Hybrid Thiosemicarbazone Derivatives as Anticancer Agents

Chem Biodivers. 2021 Dec;18(12):e2100580. doi: 10.1002/cbdv.202100580. Epub 2021 Nov 23.

Abstract

Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5-9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5-9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIβ enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIβ protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates.

Keywords: anticancer; molecular docking; thiosemicarbazone; topoisomerase IIβ.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Cycle Checkpoints / drug effects
  • Cell Proliferation / drug effects
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • MCF-7 Cells
  • Molecular Docking Simulation*
  • Molecular Structure
  • Thiosemicarbazones / chemical synthesis
  • Thiosemicarbazones / chemistry
  • Thiosemicarbazones / pharmacology*

Substances

  • Antineoplastic Agents
  • Thiosemicarbazones

Grants and funding