Assessing the antiproliferative effect of biogenic silver chloride nanoparticles on glioblastoma cell lines by quantitative image-based analysis

IET Nanobiotechnol. 2021 Aug;15(6):558-564. doi: 10.1049/nbt2.12038. Epub 2021 Mar 22.

Abstract

Glioblastoma is the most life-threatening tumour of the central nervous system. Temozolomide (TMZ) is the first-choice oral drug for the treatment of glioblastoma, although it shows low efficacy. Silver nanoparticles (AgNPs) have been shown to exhibit biocidal activity in a variety of microorganisms, including some pathogenic microorganisms. Herein, the antiproliferative effect of AgCl-NPs on glioblastoma cell lines (GBM02 and GBM11) and on astrocytes was evaluated through automated quantitative image-based analysis (HCA) of the cells. The cells were treated with 0.1-5.0 μg/ml AgCl-NPs or with 9.7-48.5 μg/ml TMZ. Cells that received combined treatment were also analysed. At a maximum tested concentration of AgCl-NPs, GBM02 and GBM11, the growth decreased by 93% and 40%, respectively, following 72 h of treatment. TMZ treatment decreased the proliferation of GBM02 and GBM11 cells by 58% and 34%, respectively. Combinations of AgCl-NPs and TMZ showed intermediate antiproliferative effects; the lowest concentrations caused an inhibition similar to that obtained with TMZ, and the highest concentrations caused inhibition similar to that obtained with AgCl-NPs alone. No significant changes in astrocyte proliferation were observed. The authors' findings showed that HCA is a fast and reliable approach that can be used to evaluate the antiproliferative effect of the nanoparticles at the single-cell level and that AgCl-NPs are promising agents for glioblastoma treatment.

MeSH terms

  • Cell Line, Tumor
  • Chlorides
  • Glioblastoma* / drug therapy
  • Humans
  • Metal Nanoparticles*
  • Silver / pharmacology
  • Silver Compounds

Substances

  • Chlorides
  • Silver Compounds
  • Silver
  • silver chloride