Structural and Spectral Properties of a Nonclassical C66 Isomer with Its Hydrogenated Derivative C66H4 in Theory

ACS Omega. 2021 Oct 5;6(41):27101-27111. doi: 10.1021/acsomega.1c03691. eCollection 2021 Oct 19.

Abstract

X-ray photoelectron and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of a newly discovered nonclassical isomer C 2v -C66(NC), and two classical fullerene isomers C 2-#4466C66 and C s -#4169C66 with their hydrogenated derivatives [C 2v -C66H4(NC), C 2-#4466C66H4, and C s -#4169C66H4] have been calculated at the density functional theory (DFT) level. Significant differences were observed in the electronic structures and simulated X-ray spectra after hydrogenation. Simultaneously, both X-ray photoelectron and NEXAFS spectra reflected conspicuous isomer dependence, indicating that the "fingerprints" in the X-ray spectra can offer an effective method for identifying the above-mentioned fullerene isomers. The simulated ultraviolet-visible (UV-vis) absorption spectroscopy of C 2v -C66H4(NC) has also been generated by means of the time-dependent DFT method, and the calculations are well consistent with the experimental results. Consequently, this work reveals that X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the fullerene electronic structure and isomer identification on the future experimental and theoretical fullerene domains.