Asymmetric Radical Cyclopropanation of Dehydroaminocarboxylates: Stereoselective Synthesis of Cyclopropyl α-Amino Acids

Chem. 2021 Jun 10;7(6):1588-1601. doi: 10.1016/j.chempr.2021.03.002. Epub 2021 Mar 29.

Abstract

A catalytic radical process has been developed for asymmetric cyclopropanation of dehydroaminocarboxylates with in situ-generated α-aryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the environments of D 2-symmetric chiral amidoporphyrin platform as the supporting ligands, the Co(II)-metalloradical system can effectively activate various α-aryldiazomethanes to cyclopropanate different dehydroaminocarboxylates under mild conditions, enabling the stereoselective synthesis of chiral cyclopropyl α-amino acid derivatives. In addition to high yields and excellent enantioselectivities, the Co(II)-catalyzed asymmetric radical cyclopropanation exhibits (Z)-diastereoselectivity, which is the opposite of uncatalyzed thermal reaction. Combined computational and experimental studies support a stepwise radical mechanism for the Co(II)-catalyzed cyclopropanation reaction. The resulting enantioenriched (Z)-α-amino-β-arylcyclopropanecarboxylates, as showcased for the efficient synthesis of dipeptides, may serve as unique non-proteinogenic amino acid building blocks for the design and preparation of novel peptides with restricted conformations.

Keywords: asymmetric cyclopropanation; cyclopropyl alpha-amino acids; dehydroaminocarboxylates; metalloradical catalysis; radical reaction.