Fast digital refocusing and depth of field extended Fourier ptychography microscopy

Biomed Opt Express. 2021 Aug 12;12(9):5544-5558. doi: 10.1364/BOE.433033. eCollection 2021 Sep 1.

Abstract

Fourier ptychography microscopy (FPM) shares its roots with the synthetic aperture technique and phase retrieval method, and is a recently developed computational microscopic super-resolution technique. By turning on the light-emitting diode (LED) elements sequentially and acquiring the corresponding images that contain different spatial frequencies, FPM can achieve a wide field-of-view (FOV), high-spatial-resolution imaging and phase recovery simultaneously. Conventional FPM assumes that the sample is sufficiently thin and strictly in focus. Nevertheless, even for a relatively thin sample, the non-planar distribution characteristics and the non-ideal position/posture of the sample will cause all or part of FOV to be defocused. In this paper, we proposed a fast digital refocusing and depth-of-field (DOF) extended FPM strategy by taking the advantages of image lateral shift caused by sample defocusing and varied-angle illuminations. The lateral shift amount is proportional to the defocus distance and the tangent of the illumination angle. Instead of searching the optimal defocus distance with the optimization search strategy, which is time consuming, the defocus distance of each subregion of the sample can be precisely and quickly obtained by calculating the relative lateral shift amounts corresponding to different oblique illuminations. And then, digital refocusing strategy rooting in the angular spectrum (AS) method is integrated into FPM framework to achieve the high-resolution and phase information reconstruction for each part of the sample, which means the DOF of the FPM can be effectively extended. The feasibility of the proposed method in fast digital refocusing and DOF extending is verified in the actual experiments with the USAF chart and biological samples.