Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting

Natl Sci Rev. 2019 Nov;6(6):1266-1273. doi: 10.1093/nsr/nwz106. Epub 2019 Jul 30.

Abstract

Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system's temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element-temperature-in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.

Keywords: energy harvesting; ionic thermal up-diffusion; ionic voltage source; nanofluidics.