PKM2 promotes angiotensin-II-induced cardiac remodelling by activating TGF-β/Smad2/3 and Jak2/Stat3 pathways through oxidative stress

J Cell Mol Med. 2021 Nov;25(22):10711-10723. doi: 10.1111/jcmm.17007. Epub 2021 Oct 23.

Abstract

Hypertensive cardiac remodelling is a common cause of heart failure. However, the molecular mechanisms regulating cardiac remodelling remain unclear. Pyruvate kinase isozyme type M2 (PKM2) is a key regulator of the processes of glycolysis and oxidative phosphorylation, but the roles in cardiac remodelling remain unknown. In the present study, we found that PKM2 was enhanced in angiotensin II (Ang II)-treated cardiac fibroblasts and hypertensive mouse hearts. Suppression of PKM2 by shikonin alleviated cardiomyocyte hypertrophy and fibrosis in Ang-II-induced cardiac remodelling in vivo. Furthermore, inhibition of PKM2 markedly attenuated the function of cardiac fibroblasts including proliferation, migration and collagen synthesis in vitro. Mechanistically, suppression of PKM2 inhibited cardiac remodelling by suppressing TGF-β/Smad2/3, Jak2/Stat3 signalling pathways and oxidative stress. Together, this study suggests that PKM2 is an aggravator in Ang-II-mediated cardiac remodelling. The negative modulation of PKM2 may provide a promising therapeutic approach for hypertensive cardiac remodelling.

Keywords: Ang II; PKM2; cardiac remodelling; oxidative stress; shikonin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / metabolism*
  • Animals
  • Enzyme Inhibitors / pharmacology
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism
  • Gene Expression
  • Hypertension / complications
  • Hypertension / etiology
  • Hypertension / metabolism
  • Janus Kinase 2 / metabolism*
  • Male
  • Mice
  • Models, Biological
  • Oxidative Stress / drug effects*
  • Pyruvate Kinase / antagonists & inhibitors
  • Pyruvate Kinase / genetics*
  • Reactive Oxygen Species / metabolism
  • STAT3 Transcription Factor / metabolism*
  • Smad2 Protein / metabolism*
  • Smad3 Protein / metabolism*
  • Ventricular Remodeling / genetics*

Substances

  • Enzyme Inhibitors
  • Reactive Oxygen Species
  • STAT3 Transcription Factor
  • Smad2 Protein
  • Smad3 Protein
  • Angiotensin II
  • Pkm protein, mouse
  • Pyruvate Kinase
  • Janus Kinase 2