Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis

Cell Rep. 2021 Oct 19;37(3):109829. doi: 10.1016/j.celrep.2021.109829.

Abstract

Pseudomonas aeruginosa notoriously adapts to the airways of people with cystic fibrosis (CF), yet how infection-site biogeography and associated evolutionary processes vary as lifelong infections progress remains unclear. Here we test the hypothesis that early adaptations promoting aggregation influence evolutionary-genetic trajectories by examining longitudinal P. aeruginosa from the sinuses of six adults with CF. Highly host-adapted lineages harbored mutator genotypes displaying signatures of early genome degradation associated with recent host restriction. Using an advanced imaging technique (MiPACT-HCR [microbial identification after passive clarity technique]), we find population structure tracks with genome degradation, with the most host-adapted, genome-degraded P. aeruginosa (the mutators) residing in small, sparse aggregates. We propose that following initial adaptive evolution in larger populations under strong selection for aggregation, P. aeruginosa persists in small, fragmented populations that experience stronger effects of genetic drift. These conditions enrich for mutators and promote degenerative genome evolution. Our findings underscore the importance of infection-site biogeography to pathogen evolution.

Keywords: Pseudomonas aeruginosa; biofilm; chronic rhinosinusitis; cystic fibrosis; genome degradation; host restriction; hybrid assembly; pathoadaptation; pseudogene; sinus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cell Line
  • Cystic Fibrosis / diagnosis
  • Cystic Fibrosis / microbiology*
  • Evolution, Molecular*
  • Female
  • Genetic Drift
  • Genome, Bacterial*
  • Genotype
  • Humans
  • Longitudinal Studies
  • Male
  • Mutation*
  • Paranasal Sinuses / microbiology*
  • Phenotype
  • Phylogeny
  • Prospective Studies
  • Pseudomonas Infections / diagnosis
  • Pseudomonas Infections / microbiology*
  • Pseudomonas aeruginosa / genetics*
  • Pseudomonas aeruginosa / growth & development