Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L. Leaves

Plants (Basel). 2021 Sep 23;10(10):1986. doi: 10.3390/plants10101986.

Abstract

Lingonberry leaves have been proposed as a potential raw material for nutraceutical products and functional food due to the richness of phenolic and triterpenic compounds. However, contents of these bioactive compounds tend to vary greatly with physiological, climatic, and edaphic conditions, resulting in lingonberry leaves' nutritional-pharmaceutical quality changes. In this context, we examined the effects of seasonal and geographical factors on phenolic and triterpenoid contents in lingonberry leaves. Quantitative and qualitative differences between samples were determined using validated HPLC-PDA methods. A total of 43 bioactive compounds were found at a detectable level throughout the year in young and old lingonberry leaves, with the highest contents of most compounds observed in samples collected in autumn-first half of spring. This suggests the potential to exploit the continuous biosynthesis for a longer harvesting season. Considerable variations in phytochemical profiles of lingonberry leaves, obtained from 28 locations in Lithuania, were found. Correlation analyses revealed significant negative correlations between contents of particular constituents and sunshine duration, temperature, and precipitation, and positive correlation with air humidity, longitudes, and altitudes of collecting locations and macronutrients in soil. These results suggest that harsh weather is favorable for most identified compounds and it may be possible to achieve appropriate accumulation of secondary metabolites by adjusting edaphic conditions. Taken together, the accumulation of phenolics and triterpenoids in lingonberry leaves highly depends on phenological and geographical factors and the influence of both variables differ for the particular compounds due to different metabolic processes in response to stresses.

Keywords: HPLC-PDA; Vaccinium vitis-idaea L.; lingonberry leaves; phenolics; seasonal and geographical variation; triterpenoids.