The Role of the Mechanical, Structural, and Thermal Properties of Poly(l-lactide- co-glycolide- co-trimethylene carbonate) in the Development of Rods with Aripiprazole

Polymers (Basel). 2021 Oct 15;13(20):3556. doi: 10.3390/polym13203556.

Abstract

In this work, we aimed to determine the role of the mechanical, structural, and thermal properties of poly(l-lactide-co-glycolide-co-trimethylene carbonate) (P(l-LA:GA:TMC)) with shape memory in the formulation of implantable and biodegradable rods with aripiprazole (ARP). Hot melt extrusion (HME) and electron beam (EB) irradiation were applied in the formulation process of blank rods and rods with ARP. Rod degradation was carried out in a PBS solution. HPLC; NMR; DSC; compression and tensile tests; molecular weight (Mn); water uptake (WU); and weight loss (WL) analyses; and SEM were used in this study. HME and EB irradiation did not influence the structure of ARP. The mechanical tests indicated that the rods may be safely implanted using a pre-filled syringe. During degradation, no unfavorable changes in terpolymer content were observed. A decrease in the glass transition temperature and the Mn, and an increase in the WU and the WL were revealed. The loading of ARP and EB irradiation induced earlier pore formation and more intense WU and WL changes. ARP was released in a tri-phasic model with the lag phase; therefore, the proposed formulation may be administered as a delayed-release system. EB irradiation was found to accelerate ARP release.

Keywords: aripiprazole; compression and tensile tests; drug delivery system; mechanical properties; poly(l-lactide-co-glycolide-co-trimethylene carbonate); polymer degradation; shape memory.