Selectively Etched Halloysite Nanotubes as Performance Booster of Epoxidized Natural Rubber Composites

Polymers (Basel). 2021 Oct 14;13(20):3536. doi: 10.3390/polym13203536.

Abstract

Halloysite Nanotubes (HNT) are chemically similar to clay, which makes them incompatible with non-polar rubbers such as natural rubber (NR). Modification of NR into a polar rubber is of interest. In this work, Epoxidized Natural Rubber (ENR) was prepared in order to obtain a composite that could assure filler-matrix compatibility. However, the performance of this composite was still not satisfactory, so an alternative to the basic HNT filler was pursued. The surface area of HNT was further increased by etching with acid; the specific surface increased with treatment time. The FTIR spectra confirmed selective etching on the Al-OH surface of HNT with reduction in peak intensity in the regions 3750-3600 cm-1 and 825-725 cm-1, indicating decrease in Al-OH structures. The use of acid-treated HNT improved modulus, tensile strength, and tear strength of the filled composites. This was attributed to the filler-matrix interactions of acid-treated HNT with ENR. Further evidence was found from the Payne effect being reduced to 44.2% through acid treatment of the filler. As for the strain-induced crystallization (SIC) in the composites, the stress-strain curves correlated well with the degree of crystallinity observed from synchrotron wide-angle X-ray scattering.

Keywords: acid treatment; epoxidized natural rubber; halloysite nanotubes; tensile properties; wide-angle X-ray scattering.