New Waste-Based Composite Material for Construction Applications

Materials (Basel). 2021 Oct 14;14(20):6079. doi: 10.3390/ma14206079.

Abstract

The global demand for fiber-based products is continuously increasing. The increased consumption and fast fashion current in the global clothing market generate a significant quantity of pre-and post-production waste that ends up in landfills and incinerators. The present study aims to obtain a new waste-based composite material panel for construction applications with improved mechanical properties that can replace traditional wood-based oriented strand boards (OSB). The new composite material is formed by using textile wastes as a reinforcement structure and a combination of bi-oriented polypropylene films (BOPP) waste, polypropylene non-woven materials (TNT) waste and virgin polypropylene fibers (PP) as a matrix. The mechanical properties of waste-based composite materials are modeled using the Taguchi method based on orthogonal arrays to maximize the composite characteristics' mechanical properties. Experimental data validated the theoretical results obtained.

Keywords: construction applications; mechanical properties; panel; textile waste; waste-based composite.