Health-Promoting Properties of Borage Seed Oil Fractionated by Supercritical Carbon Dioxide Extraction

Foods. 2021 Oct 15;10(10):2471. doi: 10.3390/foods10102471.

Abstract

Borage (Borago officinalis L.) seed oil is an important source of γ-linolenic acid, which is normally used as a treatment against different pathologies. Since the fractionation of this interesting seed oil has many environmental, economic and biological benefits, two borage fractionation techniques after extraction with CO2 under supercritical conditions have been studied: precipitation in two cyclone separators and countercurrent extraction column. Both techniques have successfully collected free fatty acids in one fraction: (i) two separators set up in series obtained the highest concentration of free fatty acids in separator 2 at 90 bar/40 °C; (ii) when countercurrent extraction column was used, the acidity index of the raffinate stream was independent from the operating conditions (2.6 ± 0.5%). Furthermore, the composition of the fatty acids, as well as their antioxidant and cytotoxic activities, were determined. The profile of the fatty acids obtained by either of these two methods remained unaltered, so that the crude oil exhibited improved antioxidant and cytotoxic properties. All the extracts obtained in the two cyclone separators at the same pressure/temperature conditions displayed high tumouricidal activity against HL 60 promyelocytic leukaemia cells, even if the extracts at 50% concentration from separator 2 presented a lower inhibitory activity (IC50). The extracts from separator 2 at 90 bar/40 °C exhibited the highest anti-proliferative activity at low doses (IC50 of 0.3 μL/mL for the trypan blue exclusion test). To reach the lethal dose-IC50-with the product obtained through countercurrent column fractionation, a concentration of 2 μL/mL of crude borage oil raffinate was required.

Keywords: HL 60 leukaemia cells; antioxidant capacity; borage oil; countercurrent extraction column; cytotoxic activity; precipitation in two cyclone separators; supercritical carbon dioxide.