Protective Effects of Lignin-Carbohydrate Complexes from Wheat Stalk against Bisphenol a Neurotoxicity in Zebrafish via Oxidative Stress

Antioxidants (Basel). 2021 Oct 18;10(10):1640. doi: 10.3390/antiox10101640.

Abstract

Lignin-carbohydrate complexes (LCCs) from different lignocellulosic biomass have shown biological qualities as antioxidant and immunostimulant. By contrast, the application of LCCs as protectant against neurotoxicity caused by different compounds is scarce. In this work, two kinds of LCCs with carbohydrate-rich and lignin-rich fractions were obtained from wheat stalk and used to protect against BPA-neurotoxicity in zebrafish. The results showed that BPA at a concentration of 500 µg/L results in neurotoxicity, including significant behavioral inhibition, and prevents the expression of central nervous system proteins in transgenic zebrafish models (Tg (HuC-GFP)). When the zebrafish was treated by LCCs, the reactive oxygen species of zebrafish decreased significantly with the change of antioxidant enzymes and lipid peroxidation, which was due to the LCCs' ability to suppress the mRNA expression level of key genes related to nerves. This is essential in view of the neurotoxicity of BPA through oxidative stress. In addition, BPA exposure had negative effects on the exercise behavior, the catalase (CAT) and superoxide dismutase (SOD) activity, and the larval development and gene expression of zebrafish larvae, and LCC preparations could recover these negative effects by reducing oxidative stress. In zebrafish treated with BPA, carbohydrate-rich LCCs showed stronger antioxidant activity than lignin-rich LCCs, showing their potential as a neuroprotective agents.

Keywords: antioxidant extract; bisphenol A (BPA); oxidative stress; wheat stalk lignin-carbohydrate complexes; zebrafish.