Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2

PLoS One. 2021 Oct 22;16(10):e0259054. doi: 10.1371/journal.pone.0259054. eCollection 2021.

Abstract

Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass*
  • Carbon Dioxide
  • Quercus / growth & development*
  • Soil*
  • Trees / growth & development
  • Wood / growth & development*

Substances

  • Soil
  • Carbon Dioxide

Grants and funding

The work was supported by the Internal Grant Agency of Mendel University in Brno with grant number 030/2020, IGRÁČEK MENDELU project CZ.02.2.69/0.0/0.0/19_073/0016670, reg. numb. SGC-2021-013 and Ministry of Education, Youth and Sports of CR within the CzeCOS program, grant number LM2018123. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.