eDNA revealed in situ microbial community changes in response to Trapa japonica in Lake Qionghai and Lake Erhai, southwestern China

Chemosphere. 2022 Feb;288(Pt 3):132605. doi: 10.1016/j.chemosphere.2021.132605. Epub 2021 Oct 19.

Abstract

Trapa japonica was observed to have inhibiting effects and could be used as a potential environment-friendly control strategy for cyanobacterial blooms in freshwater. However, the changes and effecting mechanisms in eukaryotic and prokaryotic communities by T. japonica are not yet clear. In this study, the effects of T. japonica on microbial communities were assessed in Lake Qionghai and Lake Erhai by 18S rRNA and 16S rRNA amplicon sequencing, respectively. The results showed that T. japonica can improve biodiversity and change the microbial community structures to varying degrees in both lakes. The alpha diversity indexes of microbial communities (e.g., Shannon, Sobs, Ace and Chao 1) were higher in the water inhabited by T. japonica (TJ group) than the water uninhabited by T. japonica (control) (P < 0.05). The PCoA results suggested that the microbial community compositions differed between the two groups (PERMANOVA P = 0.001). In Lake Qionghai, the relative abundances of dominant taxa and nutrients level showed little differences between the two groups. These may result from the homogenous water condition in Lake Qionghai. While the genera Cyanobium_PCC-6307, the majority of Cyanobacteria, decreased significantly in TJ group than control according to 16S rRNA gene sequencing. In Lake Erhai, environmental variables were distinctly affected by T. japonica, which was found to drive Cryptophyceae to become the main taxa through taxonomic analysis of 18S rRNA. Based on 16S rRNA gene sequencing, T. japonica reduced the relative abundance of Cyanobacteria, such as Planktothrix_NIVA-CYA_15 and Cyanobium_PCC-6307, by enriching cyanobactericidal bacteria and growth-inhibiting bacteria (e.g., Limnohabitans and Flavobacterium) and changing environmental parameters. Our results revealed that T. japonica acts in shaping microbial communities in lakes on the community level, shedding new lights on eutrophication mitigation, one of the most serious global ecological problems we are facing.

Keywords: Biodiversity; Eukaryotic microbial communities; Microbes; Prokaryotic microbial communities; Trapa japonica.

MeSH terms

  • Cyanobacteria* / genetics
  • Eutrophication
  • Lakes
  • Microbiota*
  • RNA, Ribosomal, 16S / genetics

Substances

  • RNA, Ribosomal, 16S