Ru@N/S/TiO2/rGO: a high performance HER electrocatalyst prepared by dye-sensitization

Dalton Trans. 2021 Nov 9;50(43):15585-15592. doi: 10.1039/d1dt03072h.

Abstract

Hydrogen production from water-splitting is one of the most promising hydrogen production methods, and the preparation of the hydrogen evolution reaction (HER) catalyst is very important. Although Pt-based materials have the best catalytic activity for HER, their high price and scarcity greatly limit their large-scale industrial application prospects. Herein, a new method to prepare HER catalyst is described, where dyes used in dye-sensitized solar cells (DSSCs) were used as precursors. A high performance HER catalyst (Ru@N/S/TiO2/rGO, Ru nanoparticles (NPs) supported on N/S-doped TiO2/rGO hybrids) was prepared, and the stereoscopic molecular structure of the porphyrin dye, JR1, not only provides a prerequisite for the preparation of the hyperdispersed Ru NPs, but also successfully realizes N/S co-doping. The Ru@N/S/TiO2/rGO shows an excellent catalytic performance for the HER, which is almost the same as that with Pt/C. In 0.5 M H2SO4, the overpotential is 60 mV at 10 mA cm-2, and the Tafel slope is only 51 mV dec-1. In 1 M KOH, the overpotential is only 5 mV at 10 mA cm-2, and the Tafel slope is only 45 mV dec-1, and this performance is much better than most of the HER catalysts that have been reported. When Ru@N/S/TiO2/rGO is utilized as a catalyst in an alkaline water electrolyzer, a bias of only 1.52 V is able to complement overall water-splitting at 10 mA cm-2 (1.78 V, 100 mA cm-2). The molecular structure and coordination metal species of the dyes are easy to adjust, and the the stereoscopic structure is very helpful for inhibiting the aggregation of the metal NPs, and the strong anchoring effect with TiO2 or other carbon materials is also very helpful to achieve heteroatom doping. In addition, the process of dye-sensitization is simple and repeatable, and is a novel and efficient method to prepare the electrocatalyst.